Tutorial 11

April 20, 2017

1. Prove Dirichlet's principle for the Neumann boundary condition. It asserts that among all real-valued functions $w(\mathbf{x})$ on D the quantity

$$
E[w]=\frac{1}{2} \iiint_{D}|\nabla w|^{2} d \mathbf{x}-\iint_{\text {bdy } D} h w d S
$$

is the smallest for $w=u$, where u is the solution of the Neumann problem

$$
-\Delta u=0 \text { in } D, \quad \frac{\partial u}{\partial n}=h(\mathbf{x}) \text { on bdy } D .
$$

It is required to assume that the average of the given function $h(\mathbf{x})$ is zero (by Exercise 6.1.11).
Notice three features of this principle:
(i) There is no constraint at all on the trial functions $w(\mathbf{x})$.
(ii) The function $h(\mathbf{x})$ appears in the energy.
(iii) The functional $E[w]$ does not change if a constant is added to $w(\mathbf{x})$.
(Hint: Follow the method in Section 7.1.)
Solution: Suppose $u(\mathbf{x})$ solves the above problem, w is any function and let $v=u-w$, then

$$
\begin{aligned}
E[w]=E[u-v] & =E[u]-\iiint_{D} \nabla u \cdot \nabla v d \mathbf{x}+\iint_{\partial D} h v d S+\frac{1}{2} \iiint_{D}|\nabla v|^{2} d \mathbf{x} \\
& =E[u]-\iint_{\partial D} \frac{\partial u}{\partial n} v d S+\iiint_{D} \Delta u v d \mathbf{x}+\iint_{\partial D} h v d S+\frac{1}{2} \iiint_{D}|\nabla v|^{2} d \mathbf{x} \\
& =E[u]+\frac{1}{2} \iiint_{D}|\nabla v|^{2} d \mathbf{x}
\end{aligned}
$$

which implies

$$
E[w] \geq E[u] .
$$

2. Give yet another derivation of the mean value property in three-dimensions by choosing D to be a ball and x_{0} its center in the representation formula (1).
Solution: Choosing $D=B\left(\mathrm{x}_{0}, R\right)$ in the representation formula (1) and using the divergence theorem,

$$
\begin{aligned}
u\left(\mathbf{x}_{0}\right) & =\iint_{\partial B\left(\mathbf{x}_{0}, R\right)}\left[-u(\mathbf{x}) \cdot \frac{\partial}{\partial n}\left(\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}\right|}\right)+\frac{1}{\left|\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right|} \cdot \frac{\partial u}{\partial n}\right] \frac{d S}{4 \pi} \\
& =\iint_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R}\left[\frac{1}{R^{2}} u(\mathbf{x})+\frac{1}{R} \frac{\partial u}{\partial n}\right] \frac{d S}{4 \pi} \\
& =\frac{1}{4 \pi R^{2}} \iint_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u d S+\frac{1}{4 \pi R} \iiint_{\left|\mathbf{x}-\mathbf{x}_{0}\right|<R} \Delta u d \mathbf{x} \\
& =\frac{1}{4 \pi R^{2}} \iint_{\left|\mathbf{x}-\mathbf{x}_{0}\right|=R} u d S .
\end{aligned}
$$

3. Theorem 2 on P181: The solution of the problem

$$
\Delta u=f \quad \text { in } D \quad u=h \quad \text { on } \partial D
$$

is given by

$$
u\left(\mathbf{x}_{0}\right)=\iint_{\partial D} h(\mathbf{x}) \frac{\partial G\left(\mathbf{x}, \mathbf{x}_{0}\right)}{\partial n} d S+\iiint_{D} f(\mathbf{x}) G\left(\mathbf{x}, \mathbf{x}_{0}\right) d \mathbf{x}
$$

Solution: Let $v(\mathbf{x})=-\frac{1}{4 \pi\left|\mathbf{x}-\mathbf{x}_{0}\right|}, \mathbf{x} \neq \mathbf{x}_{0}$, then $\Delta v(\mathbf{x})=0, \mathbf{x} \neq \mathbf{x}_{0}$. Let $D_{\epsilon}=D \backslash B_{\epsilon}\left(x_{0}\right)$.
Applying Green's Second Identity to v and u on D_{ϵ}, we have

$$
\iiint_{D_{\epsilon}}-v f d \mathbf{x}=\iiint_{D_{\epsilon}} u \Delta v-v \Delta u d \mathbf{x}=\iint_{\partial D_{\epsilon}}\left[u \cdot \frac{\partial v}{\partial n}-\frac{\partial u}{\partial n} \cdot v\right] d S
$$

Noting that ∂D_{ϵ} consists of two parts and on $\left\{\left|\mathbf{x}-\mathbf{x}_{0}\right|=r=\epsilon\right\}, \frac{\partial}{\partial n}=-\frac{\partial}{\partial r}$, we have

$$
\iint_{r=\epsilon} u \frac{\partial v}{\partial n}-\frac{\partial u}{\partial n} v d S=-\iint_{r=\epsilon} u \frac{\partial v}{\partial r}-\frac{\partial u}{\partial r} v d S=-\frac{1}{4 \pi \epsilon^{2}} \iint_{r=\epsilon} u d S-\frac{1}{4 \pi \epsilon} \iint_{r=\epsilon} \frac{\partial u}{\partial r} d S=-\bar{u}-\epsilon \frac{\overline{\partial u}}{\partial r}
$$

where \bar{u} denotes the average value of u on the sphere $\{r=c\}$, and $\frac{\overline{\partial u}}{\partial r}$ denotes the average value of $\frac{\partial u}{\partial r}$ on this sphere. Since u is continuous and $\frac{\partial u}{\partial r}$ is bounded, we have

$$
-\bar{u}-\epsilon \frac{\overline{\partial u}}{\partial r} \rightarrow-u\left(\mathbf{x}_{0}\right) \quad \text { as } \epsilon \rightarrow 0
$$

So let ϵ tend to 0 and then we have

$$
\begin{equation*}
\iiint_{D}-v f d \mathbf{x}=\iint_{\partial D}\left[u \cdot \frac{\partial v}{\partial n}-\frac{\partial u}{\partial n} \cdot v\right] d S-u\left(\mathbf{x}_{0}\right) \tag{1}
\end{equation*}
$$

Suppose $G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ is the Green's function for $-\Delta$, then $H=G-v$ is a harmonic function on D, and $G=0$ on ∂D. Applying the second Green's Identity to u and H on D, we have

$$
\begin{equation*}
\iiint_{D}-H f d \mathbf{x}=\iiint_{D} u \Delta H-H \Delta u d \mathbf{x}=\iint_{\partial D}\left[u \cdot \frac{\partial H}{\partial n}-\frac{\partial u}{\partial n} \cdot H\right] d S \tag{2}
\end{equation*}
$$

Adding (2) and (3) and using $G=H+v$ in $D, G=0$ on ∂D, we get

$$
\iiint_{D}-G f d \mathbf{x}=\iint_{\partial D}\left[u \cdot \frac{\partial G}{\partial n}-\frac{\partial u}{\partial n} \cdot G\right] d S-u\left(\mathbf{x}_{0}\right)=\iint_{\partial D} h \frac{\partial G}{\partial n} d S-u\left(\mathbf{x}_{0}\right)
$$

That is,

$$
u\left(\mathbf{x}_{0}\right)=\iint_{\partial D} h \frac{\partial G}{\partial n} d S+\iiint_{D} G f d \mathbf{x}
$$

